Control of the Balance between Vapor and Heat Transfer for the Reduction of Oxygen Transport Resistance in High Current Density PEFC Operation

Yuki Kitami, Yutaka Tabe, Takemi Chikahisa

Division of Energy and Environmental Systems,

Graduate School of Engineering Hokkaido University / Laboratory of Energy Conversion Systems

E Introduction

Slide 2 of 14

Background

Flooding (the blockage of the gas supply by the accumulation of water) \Rightarrow Oxygen transport resistance increases

To improve cell performance by reducing oxygen transport resistance

- 1) To clarify the increase in oxygen transport resistance
- 2) Control of the balance between Vapor and Heat Transfer to reduce oxygen transport resistance
- 3) Effect of channel and flow rate

E Experimental Methods and Conditions Slide 3 of 14

IV curve and oxygen transport resistance measurements

Limiting Current Method

Oxygen transport resistance : $R_{\rm T} = 4F \frac{C_0}{I_{\rm Lim}}$

F: Faraday's constant C_0 : Oxygen concentration I_{lim} : Limiting current density (V=0.1V)

Conditions

Active area : 1.8cm² (2cm × 0.9cm)
Rib channel width : 0.3mm
GDL with MPL : CB-MPL, 28BC, 38BC

	Cathode	Anode	
Cell Temperature	35~80° С		
Gas	Mixed Gas (O ₂ +N ₂)	H ₂	
Flow Rate	4000sccm	100sccm	
	O ₂ : 1~24%	H ₂ : 100%	
Pressure	100kPa	100kPa	
Humidity	81%RH	81%RH	

\bigcirc Causes of Increase in R_T (CB-MPL)

Slide 4 of 14

\bigcirc Causes of Increase in R_T (CB-MPL)

<u>80°C</u>

Slide 5 of 14

Drying

Cryo-SEM Observation

Freezing Method

Observation method of the water distribution in the cell by freezing and immobilizing the water in ice form

[1] Y. Aoyama, K. Suzuki, Y. Tabe, and T. Chikahisa, *Electrochem. Commun.*, **41**, 72 (2014).

Cryo-SEM Observation Results

Ice

Ice?

<u>Flooding condition</u> (50°C, 81%RH, 220kPa)

A large amount of ice in MPL and CL

Ice

CB-MPL

<u>High temperature condition</u> (80°C,81%RH, 100kPa)

One-dimensional Analysis

Slide 8 of 14

$$RH_{CL} = \frac{P_{W,CL}}{P_{S,CL}(T_{CL})}$$

$$T_{CL} = \frac{Z_H(E - V)i}{k}(h_{GDL} + h_{MPL}) + T_S$$

$$P_{S,CL} = 6.11 \times 10^{\frac{7.5T_{CL}}{237.5 + T_{CL}}}$$

$$P_{W,CL} = Z_W \frac{iR}{2FD_{eff}} \left\{ \frac{Z_H(E - V)i}{k} \frac{(h_{GDL} + h_{MPL})^2}{2} + T_S(h_{GDL} + h_{MPL}) \right\} + P_{W,Ch}$$

Estimation of RH in the CL

Slide 9 of 14

Estimation of RH in the CL

Slide 10 of 14

Cause of Drying in the CL

RH in the CL decreases as I_{Lim} increases 100 Low thermal conduction of the CB-MPL 53%RH 80°C 80 \rightarrow Temperature in the CL (T_{CL}) increases 66%RH RH_{CL}[%RH] \rightarrow Saturated vapor pressure ($P_{S,CL}$) increases 81%RH 60 40 T_{CL} $P_{s,CL}$ 20 T_{Cell} 0 $P_{s,Ch}$ P_w 4.0 0.0 1.0 2.03.0 $I_{\rm Lim}$ [A/cm²] Pt surface MPL CL GĎ

Slide **11** of 14

	CB-MPL	28BC	38BC
Thermal Conduction $k [W/m \cdot K]$	0.116	0.500	0.350
Diffusivity D / Effective Diffusivity D_{eff}	4.10	4.50	4.50

E Vapor Diffusion and Heat Conduction **Slide 12 of 14**

Controlling the balance between vapor and heat transfer (RH is constant)

To reduce the oxygen transport resistance

	CB-MPL	28BC	38BC
Thermal Conduction $k [W/m \cdot K]$	0.116	0.500	0.350
Diffusivity D / Effective Diffusivity D_{eff}	4.10	4.50	4.50

Results (81%RH,100kPa)

28BC <u>CB-MPL</u> <u>38BC</u> 1.0 1.0 1.0 **−**64°C 0.8 0.8 0.8 **-●**-80°C **●**-80°C ►80°C 0.6 0.6 0.6 Voltage[V] Voltage[V] Voltage[V] 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Current Density[A/cm²] Current Density[A/cm²] Current Density[A/cm²] 200 200 200 **−−**40°C **−−**40°C **−**64°C 150 150 150 $R_{\rm T}$ [s/m] -----80°C $R_{\rm T} [{\rm s/m}]$ -80°C **---**80°C **[u**]₁₀₀ 100 R_{T} 50 50 50 0 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 $I_{\rm Lim}$ [A/cm²] $I_{\rm Lim}$ [A/cm²] $I_{\rm Lim}$ [A/cm²]

Slide **13** of 14

Unrealistic Operating Conditions (2)

<u>Cathode Gas Flow Rate : 4000sccm</u>

 \Rightarrow To prevent water from staying in the channel

Slide **14** of **14**

Unrealistic Operating Conditions (1)

• <u>Rib channel width : $0.3mm \rightarrow 1.0mm$ </u>

Slide **15** of 14

- **Conclusions**
 - Under high temperature conditions where water is less likely to stay in the GDL and channel, the increase in oxygen transport resistance can be due to the drying of the ionomer in the CL.

Slide 16 of 14

- It was confirmed that the increase in oxygen transport resistance could be suppressed by controlling the balance between vapor diffusion and heat conduction. This is considered to be useful knowledge for designing GDL / MPL structure.
- In this research, the liquid water is less likely to stay inside the cell (narrow channel, high gas flow rate). It is necessary to design the cell structure so that the increase in oxygen transport resistance can be suppressed even under conditions closer to actual operation.